

How to use dynamic models on OrCAD Capture

Murata Manufacturing Co., Ltd. Aug. 2021

1. Model files

At first, please see "Comparison_table_for_libraries.pdf" and check model name and file names do you want to use. It is necessary to use both of lib-file and olb-file.

Spice model: *****.lib / OLB file: *****.olb

for MLCC dynamic models

Part Number	Model Name	Lib File	OLB File	Capacitance
GCD188R71H102KA01	GCD188R71H102KA01_NONLIN	GCD18_nonlin.lib	GCD18_nonlin.olb	1000pF
GCD188R71H102MA01	GCD188R71H102MA01_NONLIN	GCD18_nonlin.lib	GCD18_nonlin.olb	1000pF
GCD188R72A102KA01	GCD188R72A102KA01_NONLIN	GCD18_nonlin.lib	GCD18_nonlin.olb	1000pF
GCD188R72A102MA01	GCD188R72A102MA01_NONLIN	GCD18_nonlin.lib	GCD18_nonlin.olb	1000pF
GCD188R71H122KA01	GCD188R71H122KA01_NONLIN	GCD18_nonlin.lib	GCD18_nonlin.olb	1200pF
GCD188R71H122MA01	GCD188R71H122MA01_NONLIN	GCD18_nonlin.lib	GCD18_nonlin.olb	1200pF
GCD188R72A122KA01	GCD188R72A122KA01 NONLIN	GCD18 nonlin lih	GCD18 nonlin olh	1200nF

for Power Inductor dynamic models

Part Number	Model Name	Lib File	OLB File	Indactance[uH]
1217AS-H-1R5N	1217ASH1R5N_NONLIN	1217ASH1R5N_nonlin.lib	1217ASH1R5N_nonlin.olb	1.5
1217AS-H-2R2N	1217ASH2R2N_NONLIN	1217ASH2R2N_nonlin.lib	1217ASH2R2N_nonlin.olb	2.2
1217AS-H-3R3N	1217ASH3R3N_NONLIN	1217ASH3R3N_nonlin.lib	1217ASH3R3N_nonlin.olb	3.3
1217AS-H-4R7N	1217ASH4R7N_NONLIN	1217ASH4R7N_nonlin.lib	1217ASH4R7N_nonlin.olb	4.7
1217AS-H-5R6N	1217ASH5R6N_NONLIN	1217ASH5R6N_nonlin.lib	1217ASH5R6N_nonlin.olb	5.6
1217AS-H-6R8N	1217ASH6R8N_NONLIN	1217ASH6R8N_nonlin.lib	1217ASH6R8N_nonlin.olb	6.8
1217AS-H-8R2M	1217ASH8R2M_NONLIN	1217ASH8R2M_nonlin.lib	1217ASH8R2M_nonlin.olb	8.2
101710 11 10011	4047401140014410111111	1017101110011 11 111	1017101110011 " "	- 10

Please note that in MLCC and Power Inductor, lib-file and olb- files are named differently.

2. Location of model files

- Unzip zip-file of OrCAD Capture dynamic model
- Place lib-file and olb-file following folder

For example

C:\forage Users\forage < username > \forage Documents Project file:

Lib-file: C:\forall Users\forall < username > \forall Documents\forall lib Olb-file: C:\forage Users\forage < username > \forage Documents\forage | \text{lb}

(*) A default location of OrCAD Capture 17.2

Project file: C:\forall Users\forall < username > \forall Documents

Lib-file: C:\forall Users\forall < username > \forall Documents\forall < project > \forall ... Olb-file: C:\u224Cadence\u224SPB 17.2\u224tools\u224capture\u224library\u224pspice

3. Create New Project

- -File menu -> New -> Project
 - Enter a project name "sample" and click "Ok" to create new project

For example, a default Location path is like this "C:\Users\username>\username)."

4. Create simulation profile (AC-simulation)

Create a simulation profile and select lib-file

- Create Simulation profile
 PSpice menu-> New Simulation Profile
- Choose Analysis Tab
 - -AC Sweep/Noise
 - -Set AC Sweep Type (Start Freq., End Freq., Points etc.)
- Choose Configuration Files
 - Select "Library"
 - Set "Details" (select lib-file and click "Add as ***" button)

5. Create a sample circuit (for MLCC)

Create a sample circuit included "Murata MLCC dynamic model"

- Place Murata model
 - -Place menu -> Parts
 - -Set Libnames (Select olb-file)
 - Choose Part from "Part LIst"
 - Place Capacitcor symbol on the schematic
- Place signal component

6. Set dc-bias voltage and temperature

and choose "Edit Properties"

Source Part

temperature

SCHEMATIC1: PAGE

GRT32EC70J107ME13 NON

PSpice Model

400

180

INS453

C1

SMDCAP

DEFAULT

K^@REFDES %1 %2 @MOD

C1

GRT32EC70J107ME13_N

GRT32EC70J107ME13 N

25 100uF

C:\USERS\MM02738\D

Default

7. Calculation results

Impedance Characteristics by OrCAD Capture

Part number: GRT32EC70J107ME13

Blue line: 0 Vdc, 25 degC.

Green line: 6.3 Vdc, 125 degC.

8. Create a sample circuit (for Power Inductor)

Create a sample circuit included "Murata Power Inductor dynamic model"

- Place Murata model
 - -Place menu -> Parts
 - -Set Libnames (Select olb-file)
 - Choose Part from "Part LIst"
 - Place Inductor symbol on the schematic
- Place signal component
 - -Place menu -> PSpice Componet... -> Source -> Current Sources -> AC

9. Set dc-current

Select and Right Click "Adc" and choose "Edit Properties"

10. Caluculation results

Impedance Characteristics by OrCAD Capture

Part number: DFE2HCAHR47MJ0 Green line: 0.1 Aac, 0Adc 0.1 Aac, 10Adc Red line:

That's all